Search results

Search for "cell viability" in Full Text gives 144 result(s) in Beilstein Journal of Nanotechnology.

Nanocarrier systems loaded with IR780, iron oxide nanoparticles and chlorambucil for cancer theragnostics

  • Phuong-Thao Dang-Luong,
  • Hong-Phuc Nguyen,
  • Loc Le-Tuan,
  • Xuan-Thang Cao,
  • Vy Tran-Anh and
  • Hieu Vu Quang

Beilstein J. Nanotechnol. 2024, 15, 180–189, doi:10.3762/bjnano.15.17

Graphical Abstract
  • cells/well one day prior to the tests. Then, the cells were treated with various particle concentrations (0.5 mg/ mL, 1 mg/mL, and 1.5 mg/mL). Cells treated with CHL and untreated cells were used as controls. Cells were incubated with NPs for 48 and 72 h. The cell viability was evaluated by the MTT
  • the nanoparticles This experiment was conducted to assess the toxicity of CHL nanoparticles to four distinct cell types (Figure 4). After 72 h of incubation, the IC50 of CHL for HepG2 was 0.45 µg/mL. After 72 h of NP exposure to HepG2, the cell viability at the highest dose (1.50 μg/mL) was reduced to
  • between F127@NP and F127-folate@NP. The IC50 of CHL for MCF-7 was 0.4 μg/mL. After 72 h of incubation, the NPs had some impact on the MCF-7 cells. At a dosage of 1.5 mg/mL, the cell viability of both F127@NP and F127-folate@NP decreased to approximately 50%. These results were below PVA@NP (75%). Similar
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2024

Development and characterization of potential larvicidal nanoemulsions against Aedes aegypti

  • Jonatas L. Duarte,
  • Leonardo Delello Di Filippo,
  • Anna Eliza Maciel de Faria Mota Oliveira,
  • Rafael Miguel Sábio,
  • Gabriel Davi Marena,
  • Tais Maria Bauab,
  • Cristiane Duque,
  • Vincent Corbel and
  • Marlus Chorilli

Beilstein J. Nanotechnol. 2024, 15, 104–114, doi:10.3762/bjnano.15.10

Graphical Abstract
  • to 250 mg/mL to the cells for 24 h at 37 °C with 5% CO2. Cell viability was assessed using a colorimetric MTT assay. Cells were exposed to a 10 μL MTT stock solution (5 mg/mL in PBS) and incubated at 37 °C for 2 h. After incubation, the culture medium was replaced with 100 μL of DMSO. The optical
  • density at 570 nm was measured using a microplate reader. Cell viability was determined by comparing the absorbance of each product concentration to untreated cells, with the negative control (DMEM) representing 100% cellular metabolism. The analysis utilized average values. In vivo toxicity evaluation
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2024

Curcumin-loaded nanostructured systems for treatment of leishmaniasis: a review

  • Douglas Dourado,
  • Thayse Silva Medeiros,
  • Éverton do Nascimento Alencar,
  • Edijane Matos Sales and
  • Fábio Rocha Formiga

Beilstein J. Nanotechnol. 2024, 15, 37–50, doi:10.3762/bjnano.15.4

Graphical Abstract
  • , respectively. Additionally, this nanosystem proved to be biocompatible with skin fibroblasts (in vitro). However, neither the cell viability of this system in healthy macrophages nor models of parasite infection in this cell type were evaluated. Considering that the nanoscale platform approved by the FDA and
PDF
Album
Review
Published 04 Jan 2024

Curcumin-loaded albumin submicron particles with potential as a cancer therapy: an in vitro study

  • Nittiya Suwannasom,
  • Netsai Sriaksorn,
  • Chutamas Thepmalee,
  • Krissana Khoothiam,
  • Ausanai Prapan,
  • Hans Bäumler and
  • Chonthida Thephinlap

Beilstein J. Nanotechnol. 2023, 14, 1127–1140, doi:10.3762/bjnano.14.93

Graphical Abstract
  • cytotoxicity. However, the cytotoxicity and the interaction of cells with CUR-HSA-MPs depends also on cell uptake of particles and interactions between particles and cells [42]. Our results were in line with those previously reported by Zhang and co-workers [43]. The authors reported that cell viability of
  • A549 cells, HepG2 cells, and RAW264.7 treated with CUR encapsulated in albumin nanoparticles at 100 µg/mL decreased by only 50%, 30%, and 30%, respectively. However, the cell viability after treatment with CUR at the same concentration decreased to less than 7% in all kinds of cells in a 24 h period
  • . Moreover, after 48 h, both free CUR and CUR-HSA-MPs exhibit stronger toxic effects against Huh-7 than against MCF-7 cells. In line with earlier studies on CUR-loaded gold/chitosan nanogels, a higher concentration-dependent cell viability reduction is induced in Huh-7 cells than in MCF-7 cancerous cells [44
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2023

Prediction of cytotoxicity of heavy metals adsorbed on nano-TiO2 with periodic table descriptors using machine learning approaches

  • Joyita Roy,
  • Souvik Pore and
  • Kunal Roy

Beilstein J. Nanotechnol. 2023, 14, 939–950, doi:10.3762/bjnano.14.77

Graphical Abstract
  • AdaBoost) with periodic table descriptors for predicting the cytotoxicity, in terms of cell viability, of eight heavy metals adsorbed on nano-TiO2. Also, the best algorithm showing the most contributing features responsible for the toxicity to HK-2 (human kidney 2) cell has been determined. To the best
  • of heavy metal concentrations are given in Table 1. HK-2 cells were utilized to determine the toxicity in this study using cell viability as the endpoint. HK-2 cells are a sensitive model for examining renal cytotoxicity. They grow in monolayers and are suitable for studying the proximal tubular
  • toxicity of a variety of compounds [21]. The main advantage of HK-2 cells is that they retain the basic morphological and functional properties of proximal tubular epithelial cells [22]. Cell viability was measured by using Equation 1: Here, S stands for cell survival rate, Aexp is the absorbance value of
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2023

Nanostructured lipid carriers containing benznidazole: physicochemical, biopharmaceutical and cellular in vitro studies

  • Giuliana Muraca,
  • María Esperanza Ruiz,
  • Rocío C. Gambaro,
  • Sebastián Scioli-Montoto,
  • María Laura Sbaraglini,
  • Gisel Padula,
  • José Sebastián Cisneros,
  • Cecilia Yamil Chain,
  • Vera A. Álvarez,
  • Cristián Huck-Iriart,
  • Guillermo R. Castro,
  • María Belén Piñero,
  • Matias Ildebrando Marchetto,
  • Catalina Alba Soto,
  • Germán A. Islan and
  • Alan Talevi

Beilstein J. Nanotechnol. 2023, 14, 804–818, doi:10.3762/bjnano.14.66

Graphical Abstract
  • . cruzi compared to free BNZ. No formulation-related cytotoxic effects were observed on either Vero or CHO cells. Moreover, BNZ showed a 50% reduction in CHO cell viability at 125 µg/mL, whereas NLC-BNZ and non-loaded NLC did not exert a significant effect on cell viability at the same concentration
  • -dependent manner (Figure 10). Interestingly, the cell viability for NLC-VEHICLE or NLC-BNZ at the same tested concentrations of free BNZ resulted in values above 80% in all cases, suggesting a decreased cytotoxic effect. That decrease in toxicity generated by NLC-BNZ, in comparison with free BNZ, could be
  • spectrophotometer, Thermo Fisher Scientific) at 550 nm. The assays were performed in triplicate. Cell toxicity assay on Vero cells Cell viability was analyzed by flow cytometry as described in the “In vitro anti-amastigote effect” section after adding PI to obtain the percentage of dead cells following the
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2023

Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials

  • Celia Martín-Morales,
  • Jorge Fernández-Méndez,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2023, 14, 522–534, doi:10.3762/bjnano.14.43

Graphical Abstract
  • metabolism (CO2 and O2, respectively). Hence, their metabolic activity can be tracked in terms of the gas release, observable as bubbles at the material’s surface. Thus, the gas release is a good indicator of the overall cell viability within the encapsulation system. In addition, the undesired leakage of
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2023

Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities

  • Akif Hakan Kurt,
  • Elif Berna Olutas,
  • Fatma Avcioglu,
  • Hamza Karakuş,
  • Mehmet Ali Sungur,
  • Cansu Kara Oztabag and
  • Muhammet Yıldırım

Beilstein J. Nanotechnol. 2023, 14, 362–376, doi:10.3762/bjnano.14.31

Graphical Abstract
  • high dose (500 µM) for 24 h. It decreased cell viability by 75% in glioblastoma cells and by 25% in non-cancerous cells (data not shown). From this, it can be concluded that the selected cancer drug is highly specific to the cancer cells [56]. Therefore, human glioblastoma (U-118 MG) cell lines were
  • /v) penicillin/streptomycin (Gibco; Thermo Scientific, USA) containing high-glucose DMEM (Gibco; Thermo Scientific, USA) in an incubator at 37 °C with 5% CO2 pressure. Cell viability assay (XTT) The cells were planted at approximately 10,000/100 µL per well in 96-well plates. To reveal the dose–time
  • was used as control group. After 24 h of incubation, the medium containing the Ag NPs was removed and the cells were washed at least twice with 100 μL of DMEM without phenol red. The cell viability was evaluated with XTT (3'-[1-phenylaminocarbonyl-3,4-tetrazolium]bis(4-methoxy-6-nitro)benzenesulfonic
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2023

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • were obtained upon solvent removal. High colloidal stability (longer than three months without sedimentation), high encapsulation efficiency (>99%), slow drug release (only 15% of the drug after five days), and low cytotoxicity against HeLa cells (cell viability > 80%) were observed. In vivo tests
PDF
Album
Review
Published 13 Mar 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
PDF
Album
Review
Published 22 Feb 2023

Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine

  • Zoran M. Marković,
  • Milica D. Budimir,
  • Martin Danko,
  • Dušan D. Milivojević,
  • Pavel Kubat,
  • Danica Z. Zmejkoski,
  • Vladimir B. Pavlović,
  • Marija M. Mojsin,
  • Milena J. Stevanović and
  • Biljana M. Todorović Marković

Beilstein J. Nanotechnol. 2023, 14, 165–174, doi:10.3762/bjnano.14.17

Graphical Abstract
  • o-phenylenediamine did not disrupt the cytoplasmic membrane. Cytotoxicity testing Low cytotoxicity is one of the mandatory requirements for biomedical applications. In this paper, we performed cell viability tests by applying the MTT assay toward MRC5 human lung fibroblast cells. Lung fibroblasts
  • factor (HGF), express α-smooth muscle actin, and are used to study the regulation of HGF production and the pathogenesis of tissue fibrosis [46][47][48][49]. Figure 5 presents cell viability measurements of individual samples with different extract concentrations. The results are presented as percentage
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2023

In search of cytotoxic selectivity on cancer cells with biogenically synthesized Ag/AgCl nanoparticles

  • Mitzi J. Ramírez-Hernández,
  • Mario Valera-Zaragoza,
  • Omar Viñas-Bravo,
  • Ariana A. Huerta-Heredia,
  • Miguel A. Peña-Rico,
  • Erick A. Juarez-Arellano,
  • David Paniagua-Vega,
  • Eduardo Ramírez-Vargas and
  • Saúl Sánchez-Valdes

Beilstein J. Nanotechnol. 2022, 13, 1505–1519, doi:10.3762/bjnano.13.124

Graphical Abstract
  • tested on mononuclear cells. Ag/AgCl nanoparticles with spherical and triangular morphology were obtained. The size of the nanoparticles (10–70 nm) and the size distribution depended on the reaction temperature. A dose close to 20 µg/mL of Ag/AgCl nanoparticles considerably decreased the cell viability
  • of the MCF-7 line. The best cytotoxicity effects on cancer cells were obtained with nanoparticles at 60 and 80 °C where cell viability was reduced up to 80% at a concentration of 50 µg/mL. A significant preference was observed in the cytotoxic effect of Ag/AgCl nanoparticles against cancer cells in
  • cytotoxicity results of Ag/AgCl nanoparticles on MCF-7 breast cancer cells are shown in Figure 8. For each system of nanoparticles produced at different temperatures, cell viability is related to nanoparticle concentration. In all cases, cell viability decreased in a dose-dependent manner (i.e., cell death was
PDF
Album
Full Research Paper
Published 13 Dec 2022

Hydroxyapatite–bioglass nanocomposites: Structural, mechanical, and biological aspects

  • Olga Shikimaka,
  • Mihaela Bivol,
  • Bogdan A. Sava,
  • Marius Dumitru,
  • Christu Tardei,
  • Beatrice G. Sbarcea,
  • Daria Grabco,
  • Constantin Pyrtsac,
  • Daria Topal,
  • Andrian Prisacaru,
  • Vitalie Cobzac and
  • Viorel Nacu

Beilstein J. Nanotechnol. 2022, 13, 1490–1504, doi:10.3762/bjnano.13.123

Graphical Abstract
  • , which exhibits a strong correlation with porosity, as well as on the mineralization capability and cell viability due to the different dissolution rate. Keywords: bioactivity; hardness; microstructure; nanocomposites; porosity; Introduction Within the last decades increasing emphasis is placed on the
  • included in the test. One can see that HAP-based composites demonstrate a good biocompatibility with relative cell viability values between 94% and 99%, very closed to those for the HAP-1200 and HAG-1200 control samples. A somewhat lower biocompatibility is shown by HAG-based composites. It is most
  • a somewhat lower cell viability than HAP-1200 ceramics. For both HAP- and HAG-based composites the addition of 10% of BG decreased the values of relative viability, again due to higher ion concentration in the physiologic environment due to the higher porosity and dissolubility. Conclusion A series
PDF
Full Research Paper
Published 12 Dec 2022

Facile preparation of Au- and BODIPY-grafted lipid nanoparticles for synergized photothermal therapy

  • Yuran Wang,
  • Xudong Li,
  • Haijun Chen and
  • Yu Gao

Beilstein J. Nanotechnol. 2022, 13, 1432–1444, doi:10.3762/bjnano.13.118

Graphical Abstract
  • plates were further incubated at 37 °C for 24 h. The cell viability was then measured by MTT assay according to our previous report [23]. Statistical analysis All data shown in this article are expressed as mean ± SD for at least three separate experiments. Statistical analysis was performed using the
  • laser irradiation. Au-LNPs exhibited almost no distinct cytotoxicity under all concentrations in the absence of light. Under laser irradiation, only a slight decrease in the cell viability could be found in Au-LNP-treated cells, indicating the limited phototoxicity of Au-LNPs (Figure 5b). In darkness
  • or (d) free BDP for 0.5, 1, 2, 4, 6, and 8 h. (e) CLSM images of 4T1 cells after incubation with Au-LNPs, BDP, or AB-LNPs for 6 h. ** p < 0.01 compared with control by Student’s t-test. In vitro anti-proliferative activities of AB-LNPs with and without laser irradiation. (a) Cell viability of 4T1
PDF
Album
Full Research Paper
Published 02 Dec 2022

Orally administered docetaxel-loaded chitosan-decorated cationic PLGA nanoparticles for intestinal tumors: formulation, comprehensive in vitro characterization, and release kinetics

  • Sedat Ünal,
  • Osman Doğan and
  • Yeşim Aktaş

Beilstein J. Nanotechnol. 2022, 13, 1393–1407, doi:10.3762/bjnano.13.115

Graphical Abstract
  • % and 44.6% cell viability, respectively, whereas the cell viability of the control with DCX solution was more than 85%. DCX-loaded NP formulations showed significantly higher anticancer activity compared to DCX solution and blank NP formulations after the same incubation time and at the same
  • , water-soluble tetrazolium salt (WST-1) (10 µL) was added to wells and incubated at 37 °C for 4 h. Then, the optical density (OD) was measured via a cell plate reader at 450 nm (BiotEKM Synergy HT, USA). Cell viability (%) was calculated according to the following equation: Evaluation of in vitro
PDF
Album
Full Research Paper
Published 23 Nov 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
PDF
Album
Review
Published 05 Oct 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • graphene oxide/hydroxyapatite/chitosan composites was verified by an MTT assay using A549 cells. The results revealed that the cell viability of A549 cells exceeded 23%, showing that the composites slowed osteosarcoma progression [71]. Graphene oxide-modified chitosan/polyvinylpyrrolidone developed
  • nanofibrous structures imitating the native extracellular matrix. The potential use of this membrane for tissue engineering applications was demonstrated by using rat bone marrow mesenchymal stem cells. The cell viability of the chitosan scaffolds with 0, 0.5, 1, 1.5, and 2% of graphene oxide content was
  • evaluated by an MTT assay. The results show that chitosan with 2% of graphene oxide has the highest cell viability. The acridine orange–propidium iodide staining was carried out after 24 h of incubation with developed nanofibers: live cells were stained in green and dead cells were stained in red, which
PDF
Review
Published 29 Sep 2022

Gelatin nanoparticles with tunable mechanical properties: effect of crosslinking time and loading

  • Agnes-Valencia Weiss,
  • Daniel Schorr,
  • Julia K. Metz,
  • Metin Yildirim,
  • Saeed Ahmad Khan and
  • Marc Schneider

Beilstein J. Nanotechnol. 2022, 13, 778–787, doi:10.3762/bjnano.13.68

Graphical Abstract
  • matrix. Thus, the flexibility of the matrix is not influenced as the added macromolecule is also straightforwardly incorporated and co-crosslinked. Cell viability To address potential cell viability-reducing effects of the particle formulations, these were tested on the epithelial adenocarcinoma cell
  • line A549 and the human primary cell-derived cell line hAELVi. The cell viability was measured after incubation of blank and FITC-loaded particle formulations in concentrations ranging from 0.001 to 1 mg/mL for 4 h or 24 h with a MTT assay. No time or concentration-dependent reduction of the A549 or
  • hAELVi cell viability below 80% relative to the controls could be detected, in neither case of exposure to blank particles or FITC-dextran-loaded particles (Figure 4). Conclusion By inactivation of the crosslinking reagent, it was possible to stop the crosslinking reaction precisely. In this way, the
PDF
Album
Full Research Paper
Published 16 Aug 2022

Detection and imaging of Hg(II) in vivo using glutathione-functionalized gold nanoparticles

  • Gufeng Li,
  • Shaoqing Li,
  • Rui Wang,
  • Min Yang,
  • Lizhu Zhang,
  • Yanli Zhang,
  • Wenrong Yang and
  • Hongbin Wang

Beilstein J. Nanotechnol. 2022, 13, 549–559, doi:10.3762/bjnano.13.46

Graphical Abstract
  • . synthesized a novel probe using gold nanoparticles modified by rhodamine B isothiocyanate and poly(ethylene glycol) (RBITC-PEG-GNPs) [21]. A cytotoxicity assay showed that a cell viability of 95–100% was maintained during the incubation with RBITC-PEG-GNPs with different concentrations from 0 to 80 nM. Thus
  • , GNPs-GSH-Rh6G2 demonstrates that gold nanoparticles can improve cell viability, indicating good biocompatibility [61]. To evaluate the release behavior of GNPs-GSH-Rh6G2, the triggered release of RGCOOH started when 30 μL Hg2+ was added to the solution. Figure 7 shows that the molecule was released
  • acquired using an OLYMPUS CKX41 inverted fluorescence microscope (Olympus, Japan)/Leica SP5 laser scanning confocal microscope (Leica, Germany). Cell viability was measured by a PectraMax190 microplate reader (Molecular, USA). HPLC-MS was performed on an Agilent-ABQSTAR Pulsar (Agilent, Germany) with a
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2022

Ethosomal (−)-epigallocatechin-3-gallate as a novel approach to enhance antioxidant, anti-collagenase and anti-elastase effects

  • Çiğdem Yücel,
  • Gökçe Şeker Karatoprak,
  • Sena Yalçıntaş and
  • Tuğba Eren Böncü

Beilstein J. Nanotechnol. 2022, 13, 491–502, doi:10.3762/bjnano.13.41

Graphical Abstract
  • ], which are used for transdermal penetration studies and to determine cytotoxic concentrations of many samples. According to 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tests, the cell viability was found to be 64.4% or higher for the hydroethanolic solution (30% v/v), ETH
  • dose determined based on cell viability results of 50% or more is appropriate [22][28]. In previous studies, the cytotoxic effect of EGCG, whose antioxidant effect has been proven many times, has been investigated, especially on cancer cell lines. Although there is no cytotoxicity study on the L929
  • , version two, was used. Percentage of cell viability of L929 cells incubated with samples for 24 h. (Values are expressed as mean ± standard deviation, n = 6). Scanning electron microscopy image of ETHs. The changes in the PS, ZP, and PDI of the: (A, B and C) suspended ETHs at 4 and 25 °C. (Values are
PDF
Album
Full Research Paper
Published 31 May 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
PDF
Album
Review
Published 11 Apr 2022

Coordination-assembled myricetin nanoarchitectonics for sustainably scavenging free radicals

  • Xiaoyan Ma,
  • Haoning Gong,
  • Kenji Ogino,
  • Xuehai Yan and
  • Ruirui Xing

Beilstein J. Nanotechnol. 2022, 13, 284–291, doi:10.3762/bjnano.13.23

Graphical Abstract
  • serum (FBS) and 1% (v/v) penicillin/streptomycin. 3T3 cells at a density of 1 × 105 cells per well were incubated with different concentrations of MZG (equivalent concentration of Myr: 0, 10, 20, 40, 80, and 100 µM) for 24 h. The cell viability was tested with the methyl thiazolyl tetrazolium (MTT
  • was evaluated. After the treatment of 3T3 cells with different concentrations of MZG for 24 h, 100 µM of H2O2 was used to treat the 3T3 cells. The capability of protecting cells from damage was accessed by the cell viability assay. After that, 2′7′-dichlorodihydrofluorescein diacetate (DCFH-DA) dye
  • experiments The cytotoxicity of antioxidants is of importance for biomedical applications. Therefore, the cytotoxicity of MZG nanoparticles was assessed by incubating 3T3 cells and determining the cell viability via MTT assay [40]. 3T3 cells were treated with different concentrations of MZG nanoparticles
PDF
Album
Supp Info
Correction
Full Research Paper
Published 01 Mar 2022

Photothermal ablation of murine melanomas by Fe3O4 nanoparticle clusters

  • Xue Wang,
  • Lili Xuan and
  • Ying Pan

Beilstein J. Nanotechnol. 2022, 13, 255–264, doi:10.3762/bjnano.13.20

Graphical Abstract
  • diameter of 329.2 nm. They are highly absorptive at the near-infrared wavelength of 808 nm and efficient at locally converting light into heat. In vitro experiments using light-field microscopy and cell viability assay showed that Fe3O4 NPCs, in conjunction with near-infrared irradiation, effectively
  • during NIR irradiation NPCs caused overt apoptosis and necrosis in a dosage-dependent manner (Figure 3a). The strongest effect was observed for the sample with 0.25 mg/mL NPCs. NPCs alone, on the contrary, did not affect cell viability at low concentrations and only caused signs of mild cellular toxicity
  • -based nanoparticles, this method has long been regarded as the gold standard for cell viability and proliferation studies, and thus been applied extensively in studies of metal-containing nanoparticles [18][19][20]. In accordance with our flow cytometry findings, the MTT viability assay showed that in
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2022

Effects of drug concentration and PLGA addition on the properties of electrospun ampicillin trihydrate-loaded PLA nanofibers

  • Tuğba Eren Böncü and
  • Nurten Ozdemir

Beilstein J. Nanotechnol. 2022, 13, 245–254, doi:10.3762/bjnano.13.19

Graphical Abstract
  • mechanical properties of nanofibers. Enhanced mechanical properties are known to improve cell viability and differentiation [34]. The mechanical properties of all PLA nanofibers (PLA, PLA/PCL, and PLA/PLGA) are suitable. However, the production of PLA/PLGA nanofibers provides an advantage as it leads to
  • improved mechanical properties compared to those of PLA nanofibers and PLA/PCL nanofibers, improving cell viability and differentiation. Conclusion Nanofibers can be effectively used in tissue engineering and controlled drug delivery due to their structural properties, which are morphologically similar to
  • thus a decrease in the mechanical properties of the PLA nanofibers. PLA/PLGA nanofibers may be advantageous for improving cell viability and differentiation thanks to its advanced mechanical properties compared to those of PLA nanofibers. Nevertheless, the mechanical properties of all nanofibers
PDF
Album
Full Research Paper
Published 21 Feb 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • adhesion and proliferation of hFOB. Their results also showed a noticeable reduction in cell viability with a higher percent of TiO2 (7 wt %). An antibacterial study of these fabricated structures implied that a minimum of 5 wt % concentration of TiO2 is sufficient for achieving the desired antibacterial
  • can support and initiate cancer growth, the cytotoxicity of W. somnifera-synthesized TiO2 nps was tested against the human hepatic cancer cell line HepG2 and a concentration-dependent decrease in cell viability of HepG2 cells was discovered [93]. Thabet et al. also showed the antifungal efficiency of
  • (Figure 5) by inducing apoptosis in a caspase-dependent manner. Cytotoxicity tests of TiO2 nps showed 95% cell viability, ensuring its broad application in biomedicine for cancer therapeutics. Moreover, TiO2 nps increases the DOX accumulation in tumor cells while limiting the harmful side effects caused
PDF
Album
Review
Published 14 Feb 2022
Other Beilstein-Institut Open Science Activities